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Stokesian Dynamics has been used to investigate the origins of shear thickening in
concentrated colloidal suspensions. For this study, we considered a monolayer
suspension composed of charge-stabilized non-Brownian monosized rigid spheres
dispersed at an areal fraction of φ

a
¯ 0.74 in a Newtonian liquid. The suspension was

subjected to a linear shear field. In agreement with established experimental data, our
results indicate that shear thickening in this system is associated with an order–disorder
transition of the suspension microstructure. Below the critical shear rate at which this
transition occurs, the suspension microstructure consists of two-dimensional analogues
of experimentally observed sliding layer configurations. Above this critical shear rate,
suspensions are disordered, contain particle clusters, and exhibit viscosities and
microstructures characteristic of suspensions of non-Brownian hard spheres. In
addition, suspensions possessing the sliding layer microstructure at the beginning of
supercritical shearing tend to retain this microstructure for a period of time before
disordering. The onset of this disorder is due to the formation of particle doublets
within the suspension. Once formed, these doublets rotate, due to the bulk motion, and
disrupt the long-range order of the suspension. The cross-stream component of the
centre-to-centre separation vector associated with the two particles forming a doublet,
which is zero when the doublet is perfectly aligned with the bulk velocity vector, grows
exponentially with time. This strongly suggests that the evolution of these doublets is
due to a change in the stability of the sliding layer configurations, with this type of
ordered microstructure being linearly unstable above a critical shear rate. This
contention is supported by results of a stability analysis. The analysis shows that a
single string of particles is subject to a linear instability leading to the formation of
particle doublets. Simulations were repeated with different numbers of particles in the
computational domain, with the results found to be qualitatively independent of
system size.

1. Introduction

In spite of the importance of colloidal suspensions in commercial applications, the
phenomenon of shear thickening in these materials remains poorly understood. Shear
thickening, which can adversely affect many types of industrial processes (see Barnes
1989), is quite common and has been observed in hard-sphere systems (see e.g. Bender
& Wagner 1996), mono- and polydisperse suspensions of repulsive particles (see e.g.
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Chow & Zukoski 1995a and Laun et al. 1992), as well as in other types of suspensions.
In this work, our interest is shear thickening in monodisperse suspensions of repulsive
particles. Below, the current understanding of shear thickening in these systems is
reviewed. We then describe the objective of the current study, which is to gain a better
understanding of the origins of order–disorder transitions that are related to shear
thickening in these types of suspensions.

In part because of its negative impact on industrial processes, shear thickening in
repulsive systems has been extensively studied over the last few decades. As a result,
there is a considerable body of knowledge regarding the rheological and micro-
structural changes associated with this phenomenon. An example is the work of
Hoffman (1972), who measured shear-induced rheological and microstructural changes
in monodisperse suspensions of sterically stabilized spheres. Measured viscosities from
this study are shown in figure 1 and indicate that shear thickening can be severe at high
densities. In particular, at a volume fraction φ

v
¯ 0.57, Hoffman (1972) measured a

discontinuous jump in which the viscosity increased about 100-fold. Although shear
thickening had been observed prior to this study (see e.g. Metzner & Whitlock 1958),
Hoffman’s measurements were the first evidence of discontinuous shear thickening.

Microstructural changes associated with the viscosity variation in figure 1 were
inferred from light diffraction patterns, obtained by passing a collimated beam of white
light through the sheared suspension. From these patterns, Hoffman (1972) (see also
Hoffman 1991) determined that the shear thickening in this system was associated with
an order–disorder transition of the suspension microstructure. Below the critical shear
rate at which this transition occurred, the microstructure consisted of hexagonally
close-packed layers of particles oriented parallel to planes of constant velocity. Above
the critical shear rate, Hoffman’s diffraction patterns indicated a completely disordered
or amorphous microstructure. Hoffman further conjectured that the viscosity increase
associated with the order–disorder transition was due to particle collisions in the
disordered state, and the absence of these collisions when the suspension was ordered.

Hoffman’s results were criticized by Strivens (1976) and Chaffey & Wagstaff (1977),
who believed that shear thickening was a machine artifact that could be avoided by
reducing rheometer acceleration. However, since these earlier works, numerous other
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studies of shear thickening in repulsive suspensions have been undertaken. These
include Hoffman (1974), Willey & Macosko (1978), Boersma, Laven & Stein (1990),
Boersma et al. (1991), Laun, Bung & Schmidt (1991), Laun et al (1992), Chen et al.
(1994), and Chow & Zukoski (1995a, b), and they confirm many of Hoffman’s findings.
As a result, there now appears to be strong agreement that shear thickening in
concentrated charge- and sterically stabilized, monodisperse suspensions occurs with
an order–disorder transition of the suspension microstructure.

We note that the link between shear thickening and order–disorder transitions is not
as obvious in polydisperse and hard-sphere suspensions. The recent work of Bender &
Wagner (1996) for model hard-sphere suspensions suggests that shear thickening in
these systems occurs in the absence of an order–disorder transition, with the viscosity
increase due to the formation of clusters that do not exist at subcritical shear rates. A
similar explanation has been advanced by D’Haene, Mewis & Fuller (1993).

With the link between microstructural transitions and shear thickening in repulsive
monodisperse suspensions well established, a number of investigators have developed
models to predict the onset of disorder, and hence the onset of shear thickening.
Hoffman (1974) proposed that observed microstructural transitions might be due to an
instability of the layered configurations, with the layered configurations unstable above
the critical shear rate. In his view, ordered layers become unstable at the shear rate
where hydrodynamic torques acting on the particle layers begin to exceed torques
arising from repulsive interparticle forces. He believed that this imbalance would cause
particles to be ejected from the layers, leading to a loss of microstructural order. Based
on this idea, Hoffman (1974) developed a mathematical model to predict the critical
shear rate for the onset of shear thickening. However, this model was never rigorously
tested.

More recently, a model predicting the onset of shear thickening has been advanced
by Boersma et al. (1990). Somewhat similar in concept to the model of Hoffman (1974),
their treatment is based on the hypothesis that charge-stabilized suspensions begin to
become disordered, and shear thicken, at the shear rate where hydrodynamic forces
acting on the suspended particles begin to exceed forces due to electrostatic repulsion.
In their model, they consider two spheres approaching along their line of centres and
assume the critical shear rate occurs when the net force on each particle is zero. Using
simplified expressions for these forces, and assuming particles are monosized and
hexagonally close-packed within layers, Boersma et al. (1990) obtained an expression
for the critical shear rate γd

c
of the form

γd
c
¯C²(φ

vm
}φ

v
)"/$®1´. (1)

In (1), C is a constant determined by the properties of the particles and the suspending
liquid, φ

v
is the volume fraction of suspended particles, and φ

vm
is the maximum

volume fraction attainable for the assumed microstructure. Predictions obtained from
this model have been compared to experimental data with varying degrees of
agreement. Boersma et al. (1990) found reasonable agreement between model
predictions and their experimentally measured critical shear rates. However, Chen et
al. (1994) found the model severely overpredicted their measured values of γd

c
.

Despite reasonable agreement with their own experimental data, there appears to be
a flaw in the model of Boersma et al. (1990). Since they assumed hydrodynamic forces
to be due entirely to the effect of the thin lubrication layer between the particles, both
hydrodynamic and electrostatic forces are repulsive as the particle separation
approaches zero. Therefore, the net force on the particles in their model can never be
zero.
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Chow & Zukoski (1995a) have proposed a model of shear thickening in repulsive
systems that is somewhat different from the models discussed above. They believe that
commonly observed order–disorder transitions and shear thickening are two distinct
phenomena, with disorder a necessary but not sufficient condition for shear thickening.
In agreement with others, they believe the onset of disorder is due to an instability that
arises from an imbalance of hydrodynamic and interparticle forces. However, they
believe shear thickening will occur only if bulk deformation rates exceed particle
diffusion rates. In their view, this leads to the formation of particle clusters, which if
sufficiently large can span the rheometer gap and generate the large stresses
characteristic of shear thickening. Data presented in Chow & Zukoski (1995b) are in
agreement with this model and indicate that moderately dense repulsive suspensions
will disorder without shear thickening. However, since particle diffusivities decrease
with increasing volume fraction, the model of Chow & Zukoski (1995a) does suggest
a correlation between shear thickening and order–disorder transitions in very dense
suspensions. In agreement with Hoffman (1972), the data of Chow & Zukoski (1995b)
do indicate such a correlation.

A common element of the models discussed above is the view that observed
order–disorder transitions are due to an imbalance of forces or torques acting on the
suspended particles. However, since particle inertia is extremely small in colloidal
suspensions, particles should be force- and torque-free in the range of shear rates at
which disordering is typically observed. This suggests that the mechanism responsible
for these transitions cannot be a force or torque imbalance.

However, there does appear to be substantial evidence to suggest that observed
order–disorder transitions in repulsive suspensions are due to a microstructural
instability. For non-aqueous suspensions of polyvinyl chloride particles, Willey &
Macosko (1978) measured viscosities at a number of discrete shear rates and observed
discontinuous shear thickening at the highest shear rate in this range. Subsequent
measurements at shear rates intermediate to the two highest discrete values indicated
a temporally increasing viscosity. The observed rheopexy continued until the sample
was ejected from the rheometer. Laun et al. (1991) and Chen et al. (1994) found that
suspensions subjected to a step change in shear rate from subcritical to supercritical
values would retain the low viscosity associated with the subcritical shear rate.
However, after short periods of supercritical shearing, the viscosity would abruptly
increase to a value more characteristic of the supercritical shear rate. Laun et al. (1991,
1992) have observed metastable low viscosities at shear rates in excess of γd

c
. In

addition, in tests in which the imposed shear stress was ramped up to some maximum
value and then ramped down to its original value, Laun et al. (1991) observed distinct
hysteresis behaviour, with the critical shear rate marking the onset of shear thickening
significantly larger during the upward ramp than during the downward ramp. The
results of these investigations are consistent with the view that order–disorder
transitions in charge- and sterically stabilized suspensions arise from an instability of
the layered configurations. Furthermore, observations of metastability and hysteresis
suggest the importance of both a linear and a finite-amplitude instability.

With recent advances in simulation methods and computer technology, dynamic
simulation has become a viable tool for investigations of shear thickening. Stokesian
Dynamics (Brady & Bossis 1988) has been employed for a number of these studies and
has confirmed many experimental findings. Brady & Bossis (1985) employed Stokesian
Dynamics to investigate the behaviour of moderate-density charge-stabilized
suspensions. The results of their simulations indicated that the suspensions shear
thicken, a result they attribute to the formation of particle clusters. Brady & Bossis
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(1988) used an analogous technique to simulate suspensions in narrow gaps and
observed the formation of gap-spanning clusters. Chow & Zukoski (1995a) believe
such clusters are responsible for shear thickening in very dense charge- and sterically
stabilized suspensions. More recently, Boersma, Laven & Stein (1995) used Stokesian
dynamics to investigate the behaviour of suspensions in which particles experience
both attractive and repulsive forces. In agreement with experimental data, their results
indicate that shear thickening is associated with a microstructural transition from
ordered layers to an amorphous state.

Despite numerous investigations of shear thickening in monodisperse, charge- and
sterically stabilized suspensions, the basic mechanism responsible for the underlying
order–disorder transition that triggers shear thickening is still unknown. The goal of
the present investigation is to determine the nature of this mechanism. In particular,
we suggest that the observed order–disorder transitions in dense repulsive systems are
due to an instability of the layered configurations existing at subcritical shear rates.
Confirmation of this hypothesis will require measurement of transient particle motions
in the suspensions. For the colloidal suspensions of interest here, these motions are
extremely small and cannot be readily measured experimentally. However, micro-
structural information is readily available from dynamic simulation. Therefore, for this
investigation Stokesian Dynamics will be employed. Stokesian Dynamics has been
used successfully in a number of other rheological studies (see e.g. Bonnecaze & Brady
1992; Chang & Powell 1993; Boersma et al. 1995; Dratler & Schowalter 1996), and was
selected for this work because it provides both bulk rheological properties and detailed
microstructural information.

The simulation method used for this work is described in §2. In §3 our major findings
are presented. Observed rheological and microstructural transitions are discussed in
§3.1 where they are compared to available experimental data. In §3.2, we discuss the
transient evolution of the rheology and microstructure and present evidence supporting
our view that this evolution is due to a linear instability. In §3.3, we present a linear
stability analysis which describes, in qualitative terms, the microstructural changes
observed in the simulations. The effect of system size on our simulations is discussed
in §3.4. Concluding remarks are presented in §4.

2. Simulation method

For the simulations discussed here we match the parameters to experiments reported
by Boersma et al. (1990). Their suspension was monodisperse and consisted of charge-
stabilized polystyrene spheres dispersed at a volume fraction of φ

v
¯ 0.57 in a mixture

of glycerin and water. Shear thickening was first detected at a shear rate of γd C 1 s−".
Other relevant properties of this suspension are listed in table 1.

Given the physical characteristics of the suspension (see table 1), it is easily
determined that the dominant forces controlling particle motion are hydrodynamic
and repulsive in nature. Therefore, Brownian motion will be neglected in our
simulations. In addition, because the particle Reynolds number is approximately zero,
Stokesian Dynamics is used to simulate the sheared suspension. Stokesian Dynamics
has been outlined in great detail in a number of papers (see e.g. Bossis & Brady 1984;
Brady & Bossis 1985, 1988; Durlofsky, Brady & Bossis 1987; Brady et al. 1988;
Bonecaze & Brady 1992) and the reader is referred to these works for an extended
discussion of the method. Here, we will describe only those features essential for an
understanding of the present work.

To facilitate simulation of the experiments described above, which were conducted
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Volume fraction, φ
v

0.57
Particle radius, a 0.805 µm
Solvent viscosity, η

s
0.140 Pa s

Debye decay length, 1}κ 16.9 nm
Surface potential, ψ

!
31 mV

Solvent dielectric constant, ε 48.65

T 1. Parameters from experiments of Boersma et al. (1990).

using a concentric-cylinder rheometer, the suspension is assumed infinite in extent and
subject to an imposed velocity field given by

u¢ ¯ (y, 0, 0), (2)

where the vector u¢ denotes the bulk translational velocity of the suspension and y
denotes distance in the shear gradient direction. In (2) and for the remainder of this
paper, displacements are non-dimensionalized by the sphere radius a, time by the
reciprocal of the imposed shear rate 1}γd , translational velocities by γd a, rotational
velocities by γd , viscosity by the solvent viscosity η

s
, strain rates by γd , forces by 6πη

s
a#γd ,

and torques and stresslets by 6πη
s
a$γd . With this scaling, dimensionless time is equal to

shear strain. To reduce computational costs of the simulations, particles are restricted
to a monolayer coincident with the (x, y)-plane, the plane of shear. The monolayer
particle concentration equivalent to the volume fraction of Boersma et al.’s experiment
is obtained from the expression φ

a
¯ 3o3φ

v
}4 (Brady & Bossis 1985), where φ

a
is the

areal fraction of particles in the monolayer. For φ
v
¯ 0.57, this expression gives

φ
a
¯ 0.74. The scale factor 3o3}4 is the ratio of areal to volume fraction at maximum

packing, with maximum packing associated with a square lattice in two dimensions
and hexagonally close-packed layers in three dimensions. The suspension geometry
and the coordinate system are shown in figure 2.

To model a monolayer suspension of infinite extent, we consider a finite system of
N particles that is periodically replicated through the (x, y)-plane. Prior to shearing,
this N-particle system resides in a square computational domain of dimensions
h
cell

¬h
cell

. The dynamics of this system are governed by a force balance on the
suspended particles of the form

F
h
­F

p
¯0, (3)
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where inertia has been neglected due to the small size of the suspended particles. In (3)
the vector F

h
contains the hydrodynamic forces and torques exerted on the N

suspended particles by the fluid and the vector F
p

contains the forces and torques
exerted on each of the suspended particles by interparticle forces. For the monolayer
suspensions of interest in this work, forces associated with each particle are restricted
to the (x, y)-plane while torques associated with each particle are restricted to the z-
direction. As a result, the vectors in (3) have dimension 3N.

Durlofsky et al. (1987) have shown that the hydrodynamic force and torque vector
F
h

can be modelled using

F
h
¯®R

FU
[(U®U¢)­R

FE
:E¢. (4)

In (4), U contains the translational and rotational velocities of the N suspended
particles ; U¢ contains the translational and rotational components of the bulk velocity
that would exist at the particle centres in the absence of the particles ; and E¢ contains
the e

xx
, e

yy
, and e

xy
components of the bulk rate-of-strain tensor that would exist at

the particle centres in the absence of the particles. For the bulk velocity field given by
(2), the rate-of-strain tensor is constant with components e

xx
¯ e

yy
¯ 0 and e

xy
¯ 1}2.

Because of the monolayer geometry and the assumed form of the bulk flow,
translational velocities associated with the particles and the bulk motion are restricted
to the (x, y)-plane while rotational velocities associated with the particles and the bulk
motion are restricted to the z-direction. Therefore, all vectors in (4) have dimension 3N.

The quantities R
FU

and R
FE

in (4) are configuration-dependent resistance tensors
and are derived from an integral solution of Stokes equations. These tensors include
far-field hydrodynamic interactions, including interactions involving particles that
reside in image domains, and near-field lubrication effects. The far-field interactions are
efficiently incorporated into (4) using an Ewald sum (see Brady et al. 1988). Using the
Ewald sum, the strength of the far-field hydrodynamic interactions decays rapidly with
increasing distance between the computational domain and image domains. Therefore,
only image domains relatively close to the computational domain need be explicitly
included in the formulation of (4). In this work, image domains are included if they
abut the computational domain, or if they abut image domains that abut the
computational domain. In addition, to maintain positive definiteness, the monolayer
must also be periodically replicated in the z-direction. These periodic images are
located at z¯³z

cell
and z¯³2z

cell
, with z

cell
¯ 100h

cell
. The computational domain

is located at z¯ 0. In tests we have found that variations in z
cell

and variations in the
number of image domains employed in the formulation of (4) do not significantly
influence simulation results.

Combining (3) and (4) leads to

R
FU

[(U®U¢)¯F
p
­R

FE
:E¢, (5)

which is a system of linear algebraic equations of dimension 3N. For a known
configuration of particles, and a known dependence of F

p
on particle configuration,

equation (5) can be solved for the unknown velocities U. Therefore, given a known
initial configuration of particles, the temporal variation of particle positions and
velocities can be obtained through solution of (5) and numerical integration of U. For
this work, a fourth-order Adams–Bashforth scheme (Conte & de Boor 1980) is used for
the numerical integration. To reduce the computational costs associated with
computing R

FU
and R

FE
, the far-field contributions to these tensors, which vary slowly

with time, are recomputed at time intervals of T
inv

instead of at every time step.
In this work, repulsive interparticle forces are assumed well-described by the
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constant-potential Derjaguin formula (Russel, Saville & Schowalter 1989), and are
computed using

F αβ

p
¯ 0 τ

γd *
e−τh

1­e−τh
­

τ
"

γd $
"

e−τ
"h

1­e−τ
"h
1 r

sep

rr
sep

r
. (6)

The first term in (6) represents forces arising from the charge stabilization of the
particles, while the second term is an additional repulsive force that is employed to
prevent particle overlaps. For the high particle concentrations of interest in this work,
Dratler & Schowalter (1996) have shown that overlaps can be quite numerous in
disordered suspensions and can significantly impact the microstructure and rheology.
Therefore, following this earlier work, particle overlaps are prevented by employing the
short-range repulsive force included in (6). This force is also represented by the
constant-potential Derjaguin formula, although its precise form is unimportant
provided it rapidly decays to zero with increasing particle separation.

In (6), F αβ

p
is the force on particle α due to particle β, r

sep
is the centre-to-centre

separation vector directed from particle β to particle α, 1}τ (with τ¯ aκ and κ defined
in table 1) is a dimensionless double-layer thickness, and h¯ rr

sep
r®2. The parameter

γd * is a dimensionless shear rate equal to (6πη
s
a#γd )}(2πεε

!
ψ#

!
) where ε is the dielectric

constant of the suspending fluid, ε
!

is the permittivity of free space, and ψ
!

is the
surface potential of the particles. For the parameters listed in table 1, τ¯ 47.656 and
γd *¯ 0.6575γd . The parameters controlling the second term in (6) are taken to be
τ
"
¯ 10' and γd $

"
¯ 1. Dratler & Schowalter (1996) have shown these values to be

adequate for preventing overlaps when simulating sheared suspensions of non-
Brownian hard spheres, and that computed results are not significantly affected by
variations in these parameters for areal fractions at least as high as 0.60. Finally, in the
absence of information to the contrary, we will assume spherically symmetric charge
distributions on the suspended particles. Therefore, torques due to electrostatic effects
are identically zero.

We note that the second term in (6) does not prevent disorder or the formation of
particle clusters. It simply prevents the occurrence of unphysical particle overlaps. This
has been shown by Dratler & Schowalter (1996), who simulated sheared suspensions
of non-Brownian hard spheres. Their results indicated the formation of particle
clusters irrespective of whether this additional repulsion was employed. Furthermore,
results discussed in §3.1 show that particle clusters form when the suspension shear
thickens. This is consistent with experimental and computational evidence of others
(see e.g. Bossis & Brady 1989; D’Haene et al. 1993; Phung, Brady & Bossis 1996;
Bender & Wagner 1996).

The suspension viscosity η is defined as the volume-average shear stress divided by
the shear rate γd , and can be written

η¯ 1­3φ
a

1

N 3
N

α="

S α

hxy

­3φ
a

1

N 3
N

α="

3
α−"

β="

F αβ

px

(yβ®yα) (7)

(see Bonnecaze & Brady 1992). In (7), F αβ

px

is the x-component of interparticle force
exerted on particle α by particle β, yβ®yα is the distance in the shear-gradient direction
from the centre of particle α to the centre of particle β, and Sα

hxy

is the x, y-component
of the hydrodynamic stresslet exerted on particle α by the fluid. The stresslet S α

hxy

is
obtained from the expression

S
h
¯®R

SU
[(U®U¢)­R

SE
;E¢, (8)

where S
h

contains the three non-zero independent components of the hydrodynamic
stresslet, S

hxx

, S
hyy

, and S
hxy

, exerted on each of the N particles ; and the resistance ten-
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sors R
SU

and R
SE

are derived in a manner analogous to R
FU

and R
FE

. For each
simulation, the time average of η, denoted by ηa , is computed in the temporal interval
T
e
% t%T

s
where T

s
is the final time of the simulation and T

e
is the equilibration time

of η. The equilibration time is conservatively taken to be the time at which the running
average of η ceases to vary significantly. Statistical errors in ηa are determined using the
sub-average method outlined in Allen & Tildesley (1987).

3. Results and discussion

In this section, we present results of Stokesian Dynamics simulations of the
suspension described in §2. In §3.1, we discuss rheological and microstructural
transitions that occur when the shear rate of the imposed flow is varied from 0.1 s−" to
200 s−". Viscosities obtained from these simulations are compared to analogous
experimental measurements of Boersma et al. (1990). In §3.2, we discuss temporal
aspects of observed shear thickening, and associated order–disorder transitions, and
the effect of shear rate on these transitions. In §3.3, we present results of a stability
analysis which supports our contention that the onset of disorder is due to an
instability of the sliding layer microstructure. Finally, in §3.4 we discuss the effect of
system size on our results.

Simulations were performed using 25, 36, 81 and 100 particles. Results for N¯ 25 are
presented in §§3.1 and 3.2. Results of simulations employing 36, 81 and 100 particles
are presented in §3.4, where they are compared to our 25-particle results. Simulations
of ordered suspensions were performed using a time step of ∆t¯ 10−$. However,
because of the need to employ a short-range repulsive force to prevent particle overlaps
(see §2), a much smaller time step, ∆t¯ 7.8125¬10−', was required for simulations of
disordered suspensions. For all simulations, T

inv
¯ 0.1. To ensure that our results

would not change significantly with variations in ∆t or T
inv

, simulations of ordered
suspensions were repeated with ∆t¯ 5¬10−% and T

inv
¯ 0.1, and with ∆t¯ 10−$ and

T
inv

¯ 0.05. With these changes in ∆t and T
inv

, computed values of ηa varied by less than
1%. Because of the higher computational cost of simulating disordered suspensions,
the effect of ∆t on computed results was inferred from simulations for which γd *¯¢.
For this value of γd *, the charge-stabilized suspension described in §2 is equivalent to
a suspension of non-Brownian hard spheres. Simulations with γd *¯¢ were performed
with ∆t¯ 7.8125¬10−' and 3.90625¬10−', with T

inv
¯ 0.1 for both runs. For these

simulations, ηa differed by less than 10%. In addition, since far-field hydrodynamic
interactions are expected to be of secondary importance in concentrated disordered
suspensions, the effect of varying T

inv
was not quantified. Simulations were typically

run for 500 dimensionless time units (T
s
¯ 500) when the suspension remained ordered,

and for about 100–150 time units when the suspension was disordered. With the
exception of N, the effect of which is discussed in §3.4, variations in other numerical
parameters were found to have little influence on computed results.

3.1. Rheology and microstructure

The rheological behaviour of the suspension of interest, when subjected to an imposed
linear shear flow, was determined by performing simulations for a number of shear
rates in the range 0.1%γd % 200 s−". Simulations were performed sequentially,
beginning with the lowest shear rate (γd ¯ 0.1 s−") and finishing with the highest shear
rate (γd ¯ 200 s−"). For γd ¯ 0.1 s−", the initial configuration consisted of particles
randomly positioned in the computational domain. For γd " 0.1 s−", initial conditions
were taken to be particle positions associated with t¯T

s
from the preceding
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F 3. Relative viscosity ηa as a function of shear rate γd from Stokesian Dynamics simulation of
a monolayer suspension of charge-stabilized rigid spheres in a bulk linear shear flow, . For
comparison, experimental data of Boersma et al. (1990) (­) are also shown. For the simulations:
φ

a
¯ 0.74, τ¯ 47.656, N¯ 25, and error bars are omitted when smaller than the symbol. For γd &

12 s−", additional repulsion with τ
"
¯ 10' and γd $

"
¯ 1 was used to prevent overlapping particles.

Viscosity in the limit γd U¢ (- - - - -) is also shown, with the two lines representing the upper and lower
bounds of the 95% confidence interval associated with ηa (γd ¯¢). For the experimental data: φ

v
¯

0.57 and the suspension consists of polystyrene spheres of diameter 1.61 µm dispersed in a mixture
of glycerin and water.

simulation. For γd " 10 s−", the suspension exhibited varying degrees of disorder.
Therefore, as described in §2, particles were subjected to an additional repulsive force
in order to prevent particle overlaps. For this additional repulsion, τ

"
¯ 10' and

γd $
"
¯ 1.
For these simulations, the time-averaged viscosity ηa is shown as a function of shear

rate in figure 3. For γd ! 1 s−" the suspension is shear thinning, with ηa decreasing from
near 10 to about 4 when γd is increased from 0.1 to 1 s−". For γd " 10 s−", shear
thickening is observed, with ηa increasing about five-fold between shear rates of 10 and
20 s−". For γd & 20 s−", ηa E 20. In the limit γd U¢, the charge-stabilized suspension of
interest here is equivalent to a suspension of non-Brownian hard spheres. The viscosity
associated with such a suspension, computed using Stokesian Dynamics, is also shown
in figure 3 (dashed lines) and is seen to agree quite well with our simulated viscosities
in the range 20%γd % 200 s−". This suggests that when the suspension has completely
shear thickened, it is rheologically indistinguishable from a suspension of non-
Brownian hard spheres.

For comparison, experimentally measured viscosities obtained by Boersma et al.
(1990) for the suspension described in table 1 are also shown in figure 3. The simulated
viscosities and experimental data show the same qualitative features, including two
viscosity plateaus separated by a region of shear thickening. However, computed and
measured values of ηa differ by as much as two orders of magnitude. In addition, shear
thickening occurs over a larger range of shear rate in the experiments than in the
simulations. Although we do not have a definitive explanation of these differences, we
believe we have ruled out two causes. First, we do not believe the observed differences
are due to the number of particles used in our simulations. As will be discussed in detail
in §3.4, we have performed simulations using 36, 81 and 100 particles and have
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obtained viscosities similar to those shown in figure 3. Also, we do not believe the
observed differences are due to our assumption of a two-dimensional microstructure.
We have performed a small number of three-dimensional simulations and have
obtained viscosities similar to the simulated viscosities shown in figure 3. However,
because the number of three-dimensional simulations was limited, a definitive
explanation of the observed differences will require further investigation. The observed
discrepancies could be due in part to the absence of rheometer walls in our simulations,
which precludes the formation of rheometer-gap-spanning clusters, or to some other
physical aspect of the system that is missing from the numerical model. Gap-spanning
clusters are believed by some (see e.g. Chow & Zukoski 1995a) to be the cause of shear
thickening in charge- and sterically stabilized suspensions. However, for sheared
suspensions of non-Brownian hard spheres, we have used our simulation code to
obtain viscosities in good agreement with experimental data (see Dratler & Schowalter
1996). In addition, we have used our simulation code to replicate the simulations of
charge-stabilized suspensions that were reported by Boersma et al. (1995). Their
simulations are also of a monolayer suspension, but were performed at a much lower
areal fraction (φ

a
¯ 0.5454). Therefore, their computed viscosities are not directly

comparable to our results shown in figure 3 or to the experimental data of Boersma et
al. (1990). However, when we performed simulations exactly as described by Boersma
et al. (1995), our computed viscosities were very close to their computational results.

In agreement with established experimental data for dense monodisperse repulsive
suspensions (see e.g. Hoffman 1972; Chen et al. 1994; Chow & Zukoski 1995b), the
shear thickening observed in figure 3 is associated with an order–disorder transition of
the suspension microstructure. This is illustrated in figure 4 where the pair distribution
function g(y) is shown for γd ¯ 10, 12, 15 s−" and ¢. As noted above, the charge-
stabilized suspension of interest here is equivalent to a suspension of non-Brownian
hard spheres when γd ¯¢. The function g(y) is the normalized probability that a
particle resides at the cross-stream position y

ref
­y when another particle is known to

reside at the cross-stream position y
ref

. For γd ¯ 10 s−" (figure 4a), g(y) exhibits large
peaks at yE 2 and yE 4. Between these peaks, g(y)3 0. This indicates that the
suspension is ordered in two-dimensional analogues of experimentally observed sliding
layer configurations. These layers (actually strings since the suspension is two-
dimensional) are perpendicular to the y-axis and are separated by slightly more than
one particle diameter. In contrast, for γd ¯ 15 s−" (figure 4c) the peaks in g(y) are much
smaller and broader than those observed for γd ¯ 10 s−". This change in g(y) indicates
a loss of long-range order, with particles no longer confined to distinct layers at this
higher shear rate. For shear rates in excess of 15 s−", the suspension microsctructure,
as characterized by g(y), differs little from the microstructure at γd ¯ 15 s−". In
addition, the similarity of g(y) at γd ¯ 15 s−" to g(y) at γd ¯¢ (see figure 4d ) suggests
a supercritical microstructure that is characteristic of sheared suspensions of non-
Brownian hard spheres. For γd ¯ 12 s−", the suspension microstructure alternates in
time between periods of order and periods of disorder. The time interval between
periods of order is non-uniform and ranges from about 15 to about 120 dimensionless
time units. As a result, values of g(y) at γd ¯ 12 s−" (see figure 4b) are intermediate to
those computed for γd ¯ 10 and 15 s−". Furthermore, since this temporal variation of
microstructural order did not dissipate, even for simulations of nearly 1000 time units,
we believe it is the correct long-time behaviour at this shear rate. In addition, similar
transient variations in microstructural order have been observed experimentally by
Chen et al. (1994) and Chow & Zukoski (1995b).

To illustrate more clearly the change in microstructure associated with shear
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F 4. Pair distribution function g(y) associated with some of the simulated viscosities shown in
figure 3. φ

a
¯ 0.74, τ¯ 47.656, N¯ 25. For γd ¯ 12 s−", 15 s−" and ¢, additional repulsion with

τ
"
¯ 10' and γd $

"
¯ 1 was used to prevent overlapping particles. (a) γd ¯ 10 s−", (b) γd ¯ 12 s−", (c) γd ¯

15 s−" and (d ) γd ¯¢.

thickening, instantaneous particle configurations for γd ¯ 10 and 15 s−" are shown in
figure 5. For γd ¯ 10 s−" (figure 5a), the suspension is highly ordered with particles
confined to well-defined layers. In contrast, the configuration shown in figure 5(b),
which is associated with a local maximum in η, is highly disordered and contains
particle clusters aligned along the compressive axis of the bulk flow. The existence of
these clusters would tend to support the view of Hoffman (1972) that shear thickening
is due to particle collisions, or near collisions, in the disordered state. In addition,
consistent with our earlier comments, the disordered particle configuration in figure
5(b) is similar to configurations observed in simulations of sheared suspensions of non-
Brownian hard spheres (Dratler & Schowalter 1996). The appearance of these clusters
in the shear-thickening region is also consistent with the findings of other investigators
(see e.g. Bender & Wagner 1996; Phung et al. 1996, Bossis & Brady 1989). These
investigations have suggested that the high viscosities in the shear-thickening region are
due to the formation of large clusters similar to those seen in our simulations.

3.2. Temporal e�olution of microstructure

To gain a better understanding of the order–disorder transition discussed in §3.1, it
is useful to examine the temporal evolution of microstructure as the suspension moves
from an ordered to a disordered state. Towards this end, we have conducted a number
of simulations in which the suspension was initially ordered but was subjected to
sustained supercritical shearing. The initial condition for these simulations was a
configuration from a simulation for which γd ¯ 10 s−". At γd ¯ 10 s−", the suspension
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F 5. Instantaneous particle configurations for : (a) γd ¯ 10 s−", t¯ 500; (b) γd ¯ 15 s−", t¯ 89.1.
The configuration in (b) is associated with the maximum instantaneous value of η attained at
γd ¯ 15 s−". Configurations are from Stokesian Dynamics simulation of a monolayer suspension of
charge-stabilized rigid spheres in a bulk linear shear flow. For γd ¯ 15 s−", additional repulsion with
τ
"
¯ 10' and γd $

"
¯ 1 was employed to prevent particle overlaps. Flow is from left to right. For clarity,

the computational domain has been replicated 9 times. φ
a
¯ 0.74, τ¯ 47.656, N¯ 25.

microstructure consists of ordered layers. With this initial configuration, simulations
were run for supercritical shear rates of γd ¯ 12, 15, 20 and 100 s−", with the simulations
run sufficiently long in time so that the onset of disorder could be observed. In all cases,
the additional repulsion described in §2 was used to prevent overlaps when the
suspension was disordered. All other parameters were identical to those used for the
simulations described in §3.1.

For the simulations described above, the time dependence of η is shown in figure 6.
The viscosity is a useful quantity for assessing the level of disorder in the suspension
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F 6. Temporal dependence of instantaneous viscosity η for several values of γd , obtained from
Stokesian Dynamics simulation of a monolayer suspension of charge-stabilized rigid spheres in a bulk
linear shear flow. For all shear rates, the initial condition was an ordered particle configuration
obtained from a simulation for which γd ¯ 10 s−". Additional repulsion with τ

"
¯ 10' and γd $

"
¯ 1

was employed to prevent overlapping particles. φ
a
¯ 0.74, τ¯ 47.656, N¯ 25. (a) γd ¯ 12 s−",

(b) γd ¯ 15 s−", (c) γd ¯ 20 s−" and (d ) γd ¯ 100 s−".

since, for the high density considered, it changes significantly when the microstructure
undergoes an order–disorder transition. For the areal fraction of interest, φ

a
¯ 0.74, η

oscillates about a mean value of approximately 4 when the microstructure consists of
layers. However, when the suspension is disordered η can attain values in excess of 100.
For all shear rates shown, η is near 4 at small times, indicating the suspension remains
ordered even when subjected to supercritical shearing. However, after a period of time
the viscosity goes through a transition to much larger values, indicating a loss of
microstructural order. The time required for the onset of this disorder is a decreasing
function of shear rate, and ranged from approximately 330 dimensionless time units at
γd ¯ 12 s−" to approximately 50 dimensionless time units at γd ¯ 100 s−". Recalling that
time has been made dimensionless with the imposed shear rate, we note that the
dimensional time required for the onset of disorder is about 55 times larger for
γd ¯ 12 s−" than for γd ¯ 100 s−". For γd ¯ 12 s−" (figure 6a), the increase in viscosity at
tE 330 is followed by a reduction in viscosity at tE 360, with η returning to a value
near 4. This behaviour is indicative of an oscillation in time between periods of
microstructural order and disorder, as first noted in §3.1.

To determine if ordered layers are indeed the preferred microstructure at γd ¯ 10 s−",
simulations at this shear rate were initiated with both ordered and disordered
configurations. When started from an ordered configuration, obtained from a
simulation conducted at γd ¯ 5 s−", the suspension remained ordered for simulations of
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F 7. Instantaneous particle configurations at various times for the γd ¯ 12 s−" simulation whose
viscosity is shown in figure 6(a), obtained from Stokesian Dynamics simulation of a monolayer
suspension of charge-stabilized rigid spheres in a bulk linear shear flow. For this simulation, the initial
condition was an ordered particle configuration obtained from a simulation for which γd ¯ 10 s−".
Additional repulsion with τ

"
¯ 10' and γd $

"
¯ 1 was employed to prevent overlapping particles. Flow

is from left to right. Particle doublets are identified by shading. φ
a
¯ 0.74, τ¯ 47.656, N¯ 25.

(a) t¯ 300.0, (b) t¯ 315.0, (c) t¯ 342.0 and (d ) t¯ 344.6.

up to 6000 dimensionless time units. For simulations initiated with a disordered
configuration, generated by randomly positioning particles in the computational
domain, the suspension became ordered and remained ordered for simulations of up
to 1500 dimensionless time units. The results suggest sliding layers are indeed the
preferred asymptotic microstructure at γd ¯ 10 s−".

The persistence of low viscosities at supercritical shear rates, which is illustrated in
figure 6, is consistent with the experimental measurements of Laun et al. (1991) and
Chen et al. (1994). These investigators found that suspensions subjected to a step
change in shear rate from subcritical to supercritical values would retain the subcritical
value of the viscosity at the higher shear rate. However, after a period of supercritical
shearing, their measurements indicated an increase in viscosity to a value characteristic
of the higher shear rate.

To illustrate more clearly the onset of microstructural disorder, instantaneous
particle configurations from the γd ¯ 12 s−" simulation discussed above are shown in
figure 7 for t¯ 300, 315, 342 and 344.6. At t¯ 300 (figure 7a), particles are still largely
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confined to layers. However, by t¯ 315 particles in the middle row have begun to
aggregate with neighbouring particles to form doublets. Here we define a doublet as a
pair of particles in which the upstream particle in the pair is offset in the positive y-
direction from the downstream particle, and whose centre-to-centre separation vector
exhibits clockwise rotation on average. This definition is somewhat arbitrary, but is
useful for our purposes since it distinguishes particle pairs that rotate out of the layer,
and disrupt the microstructure, from those that merely oscillate about their mean
alignment. As the suspension is sheared, i.e. as time advances, the doublets rotate and
begin to extend out of the layer. In addition, particle separation within the doublets
decreases with time. By t¯ 344.6 (figure 7d ), the doublets have rotated sufficiently to
disrupt neighbouring layers and cause the suspension to disorder. These results
strongly suggest that the onset of microstructural disorder in this type of suspension
is due to the formation of doublets within particle layers, with these doublets rotating
due to the imposed shear and disrupting the long-range order in the suspension. This
mechanism was first proposed by Hoffman (1974). However, Hoffman (1974) believed
the doublet rotation was due to an imbalance of hydrodynamically induced and
repulsion-induced torques on the doublets. For the simulations, a torque imbalance
cannot be responsible for the observed rotation because (3) imposes a force and torque
balance on the suspended particles. Since the particles are force- and torque-free, the
doublets must be torque-free. For similar reasons, the force imbalance hypothesis of
Boersma et al. (1990) cannot explain the observed behaviour. As an additional
clarification, we note that the observed doublets in figure 7 rotate much more slowly
than individual particles in the suspension, with the grey-shaded doublet rotating by
about 90° in about 50 time units. This is significantly slower than the rotation rate of
individual particles.

Although figure 7 clearly shows the temporal evolution of particle doublets in the
suspension, it is desirable to have a more quantitative measure of this evolution. A
useful quantity in this regard is ∆y

D
, the distance in the shear-gradient direction

between the centres of the two particles forming a doublet. This quantity has a value
of zero when a doublet is perfectly aligned with the bulk velocity vector, and a value
of approximately 2 when a doublet is perpendicular to the bulk velocity vector. For the
simulations used to generate the viscosity data shown in figure 6, the temporal
evolution of ∆y

D
associated with doublets in the suspension is shown in figure 8. This

quantity is not a time- or configuration-average, but is associated with a single doublet
in the suspension. In addition, ∆y

D
for γd ¯ 30 s−", obtained from a simulation

performed exactly as described at the beginning of §3.2, is also shown. For all shear
rates shown, ∆y

D
grows exponentially at small times with a growth rate that is an

increasing function of the shear rate. For γd ¯ 20, 30 and 100 s−", exponential growth
ceases when ∆y

D
attains an O(1) value, which it does when the suspension begins to

exhibit a significant amount of disorder. In contrast, for γd ¯ 15 and 12 s−" exponential
growth ceases before ∆y

D
attains O(1) values. These deviations from exponential

growth are due to interactions with other doublets in the suspension. Despite these
deviations, the results do suggest that the evolution of observed particle doublets is due
to a linear instability of the sliding layer microstructure.

To check the temporal accuracy of these results, the γd ¯ 30 and 100 s−" simulations
used to generate ∆y

D
shown in figure 8 were repeated with ∆t¯ 10−$. These additional

simulations were run for 75 and 40 time units, respectively. Because the minimum
particle separation always exceeds 0.01 in these time intervals, the additional repulsion
described by the second term in equation (6) is negligible and was not employed. In the
original simulations a time step of ∆t¯ 7.8125¬10−' was employed. For both γd ¯ 30
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F 8. Temporal dependence of cross-stream separation distance ∆y
D

between particle centres in
pairs that have formed doublets, obtained from Stokesian Dynamics simulation of a monolayer
suspension of charge-stabilized rigid spheres in a bulk linear shear flow. For all shear rates, the initial
condition was an ordered particle configuration obtained from a simulation for which γd ¯ 10 s−".
Additional repulsion with τ

"
¯ 10' and γd $

"
¯ 1 was used to prevent overlapping particles. φ

a
¯ 0.74,

τ¯ 47.656, N¯ 25, ∆t¯ 7.8125¬10−'. ——, γd ¯ 12 s−" ; –––––, γd ¯ 15 s−" ; - - - - -, γd ¯ 20 s−" ;
…, γd ¯ 30 s−" ; -[-[-, γd ¯ 100 s−". Symbols correspond to simulations performed without additional
repulsion and with ∆t¯ 10−$, but identical in all other respects. ,, γd ¯ 30 s−" ; ­, γd ¯ 100 s−".

and 100 s−", the ∆y
D

from the ∆t¯ 10−$ simulations are shown in figure 8 and are seen
to be in excellent agreement with the ∆y

D
obtained from the ∆t¯ 7.8125¬10−'

simulations. This indicates that the simulations used to compute the ∆y
D

shown in
figure 8 are temporally well-resolved, and that the growth of ∆y

D
is not a numerical

artifact.
Additional evidence supporting the view that observed order–disorder transitions

are due to a linear instability of the sliding layer microstructure can be obtained from
examination of transient motions associated with particles not directly involved in
doublet formation. For the simulation where γd ¯ 12 s−", the temporal evolution of the
cross-stream (y) component of a particle trajectory is shown in figure 9. For the data
shown, variations due to the average motion of the configuration have been removed.
The results, which pertain to the shaded particle shown in the inset of this figure, are
oscillatory because of the shear-induced relative motion of adjacent particle layers. For
t# 275, this oscillation has nearly constant amplitude and a dominant frequency equal
to 1. However, for t$ 275, the amplitude of the oscillation begins to show visible
growth. By tE 350, the amplitude of the oscillation is approximately 0.5, and the
suspension has completely disordered.

For the data shown in figure 9, Fourier spectra were computed using a discrete
Fourier transform for the time intervals defined by

220­10i% t! 270­10i, with i¯ 0,…, 4. (9)

Data were sampled at a rate of ten points per time unit, which gives a Nyquist
frequency of five cycles per time unit. Since the trajectory data are not time periodic,
a Hanning window (Bendat & Piersol 1986) was used to minimize side-lobe leakage.

In figure 10, amplitudes of computed Fourier coefficients are shown for the
dimensionless frequency range 0% f% 2. The frequency f¯ 1 is associated with an
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inset, obtained from Stokesian Dynamics simulation of a monolayer suspension of charge-stabilized
rigid spheres in a bulk linear shear flow. For this simulation, the initial condition was an ordered
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F 10. Amplitudes of Fourier coefficients obtained from decomposition of the trajectory data
shown in figure 9. γd ¯ 12 s−", φ

a
¯ 0.74, τ¯ 47.656, N¯ 25. ——, 220% t! 270; –––––,

230% t! 280; - - - - - -, 240% t! 290; …, 250% t! 300, -[-[-, 260% t! 310.

oscillation of unit period, the dominant fluctuation for t# 275. Amplitudes associated
with this frequency, and its first harmonic ( f¯ 2), show little temporal growth. In
contrast, for 0! f! 1 and 1! f! 2 amplitudes exhibit significant temporal growth,
with pronounced maxima at frequencies of f¯ 0.2, 0.8, 1.2 and 1.8. The amplitudes
associated with these maxima grow exponentially, to an approximate degree, providing
additional evidence that the sliding layer configurations are linearly unstable above the
critical shear rate. Fourier spectra were also computed in time intervals of differing
width, with little effect on the results.
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Finally, although sliding layers appear to be the preferred asymptotic microstructure
at γd ¯ 10 s−", we did observe particle doublets at this shear rate. However, in contrast
to observations at higher shear rates, these doublets appeared intermittently and had
relatively small values of ∆y

D
. As a result, their appearance did not cause the

suspension to disorder or shear thicken. The presence of these doublets in
configurations used to initiate simulations at supercritical shear rates did result in a
more rapid onset of disorder than occurred in simulations where doublets were not
present in initial configurations. However, ∆y

D
associated with doublets in these

supercritical simulations still grew exponentially, suggesting that this growth was still
due to a linear instability of the sliding layer microstructure.

3.3. Linear stability analysis

To substantiate further our contention that the loss of microstructural order in
monodisperse charge-stabilized suspensions is due to a linear instability, we have
analysed the stability of the sliding layer microstructure. We propose that the ordered
layers become unstable because of the effect of lubrication interactions between
adjacent particles within each layer and the effect of the spatially varying velocity field.
Therefore, we will consider the stability of a single layer of particles (actually a string
since the suspension is two-dimensional) subjected to a bulk linear shear flow.
Hydrodynamic interactions with neighbouring layers will be neglected. However,
electrostatic forces due to the presence of these neighbouring layers will be included in
the analysis as they are believed to be responsible for stabilizing the particle layers. We
further assume that the hydrodynamic force on each particle is equal to the force that
would exist if that particle were alone in the fluid, plus contributions due to lubrication
interactions with its two nearest neighbours in the layer. Finally, since our simulations
indicate that the loss of microstructural order is due to the formation of particle
doublets in the suspension, we will assume that positions and velocities of the ith and
(i­2)th particles in the layer are related by
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where x denotes streamwise position, y denotes cross-stream position, u denotes
translational velocity, ω denotes rotational velocity, and R

!
is set to (π}φ

a
)"/# for

consistency with the simulations. Therefore, the stability of the layer is completely
determined by the stability of a two-particle configuration within the layer. The two
particles in this configuration are labelled 1 and 2 and are shown in figure 11.

With the above assumptions, and assuming that the fluid motion is described by
Stokes equations, the hydrodynamic forces and torques on particles 1 and 2 can be
expressed as
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F 11. Single-layer geometry used for the linear stability analysis. Particle positions are assumed
periodic, with cross-stream positions of particles i and i­2 equal and their streamwise positions
differing by 2R

!
. Particles are suspended in a Newtonian liquid subjected to a bulk linear shear flow.
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¯ 0.74.

where F
hi

is the hydrodynamic force exerted on the ith particle T
hi

is the hydrodynamic
torque exerted on the ith particle, u

i
is the translational velocity of the ith particle, ω

i

is the rotational velocity of the ith particle, u¢

i
is the translational velocity of the bulk

flow that would exist at the centre of the ith particle if the particles were absent, ω¢

is the rotational velocity of the bulk flow that would exist if the particles were absent,
and e¢ is the bulk rate of strain tensor that would exist in the absence of the particles.
For the assumed bulk flow, e

xy
and e

yx
are the only non-zero components of e¢. The

matrix elements, which we denote more generally as P αβ, are resistance tensors that
relate the relative translational or rotational motion of particle β to the force or torque
exerted on particle α. In (11), all quantities have been non-dimensionalized as described
in §2. Consistent with this scheme, the resistance tensors have been scaled by 6πη

s
al,

with l¯ 1 for the A tensors, l¯ 2 for the B, B� , and G� tensors, and l¯ 3 for the C, and
H� tensors. These resistance tensors are adaptations of quantities presented in Kim &
Karrila (1991), with a correction given by Ladd (1990). Detailed expressions for these
tensors are available from the JFM editorial office. Because of the two-dimensional
geometry, forces and translational velocities are restricted to the (x, y)-plane while
torques and rotational velocities are restricted to the z-direction.

As described in §2, the particles are assumed to be charge-stabilized with electrostatic
forces well-described by the constant-potential Derjaguin formula (Russel et al. 1989).
For interactions between particles within the layer, electrostatic forces are given by
equation (6). However, since particles in the layered configurations are separated by a
gap of about 0.06 when φ

a
¯ 0.74, the second term in (6) is neglected.

Electrostatic forces exerted on particles in the layer by particles in adjacent layers
will fluctuate in time due to the shear-induced relative motion of these layers. The time
scale of these fluctuations is approximately unity. However, as can be seen in figure 6,
the time required for an ordered configuration to completely disorder is relatively large,
ranging from about 300 dimensionless time units for γd ¯ 12 s−" to about 50
dimensionless time units for γd ¯ 100 s−". Therefore, we will assume that the effect of
these fluctuating electrostatic forces on the long-time behaviour of particles 1 and 2 is
the same as the effect of their time averages. To compute these averages, we assume
that the two nearest adjacent layers of particles (which are the only layers that
contribute significantly to the electrostatic forces exerted on particles 1 and 2) are at
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constant cross-stream positions y¯³R
!
, that these layers move with constant

velocities equal to the bulk velocity at their respective cross-stream positions, that the
particles within the layers are evenly spaced in the streamwise direction, and that the
positions of particles 1 and 2 vary slowly in comparison with the time scale of the force
fluctuations. With these assumptions, the electrostatic forces exerted on particles 1 and
2 by the adjacent layers are approximately time periodic. Therefore, the time averages
of these forces can be computed by integration over one fluctuation period. Subject to
these conditions, the y-component of the time-averaged electrostatic force due to the
adjacent layer at y¯R

!
can be written

1

γd *R
!

&R!/#

−R!/#

τ exp(®τh)

1­exp(®τh)

y«®R
!

(x#­(y«®R
!
)#)"/#

dx, (12)

where the time average has been replaced by a spatial average due to the constant
velocity of the adjacent layer, (0, y«) is the position of particle 1 (or 2), (x,R

!
) is the

position of the only particle in the adjacent row contributing significantly to the
integral, and h¯ (x#­(y«®R

!
)#)"/#®2. The x-component of the time-averaged force is

identically zero. Employing similar arguments, the y-component of the time-averaged
force arising from the adjacent row at y¯®R

!
can be written

®1

γd *R
!

&R!/#

−R!/#

g(x,®y«) dx, (13)

where g(x, y«) is the integrand in (12). Expanding the integrals in (12) and (13) in Taylor
series about y«¯ 0, and combining, leads to

2

γd * 9
y«
R

!

&R!/#

−R!/#

g
y
(x, 0) dx­O(y«$): , (14)

which is the y-component of the time-averaged electrostatic force exerted on particle
1 (or 2) due to the presence of both adjacent layers of particles. Taking τ¯ 47±656 and
R

!
¯ (π}0.74)"/# for consistency with the simulations, numerical integration of the

integral in (14) yields ®29.653358R
!
. The O(y«$) term in (14) is not required since the

stability analysis is linear.
As in the simulations, particles are assumed to be force- and torque-free. Therefore,

the equations governing the motion of particles 1 and 2 are

dxW
i

dt
¯ uW

i
, (15)

for i¯ 1,…, 4, where xW ¯ (x
"
, y

"
,x

#
, y

#
)T and uW ¯ (u

"x
, u

"y
, u

#x
, u

#y
)T. Since the particles

are spherical, angular positions are neglected in the stability analysis. With equation
(11) written more compactly as

Fq
hi

¯®R
ij
∆u

j
­B

i
, (16)

the components of uW can be obtained from

uW
i
¯ uW ¢

i
­R−"

ij
(B

j
­Fq

pj

). (17)

In (17), Fq
pj

contains the electrostatic forces exerted on particles 1 and 2, and uW ¢ ¯
(y

"
, 0, y

#
, 0)T for the assumed bulk linear shear flow.

To determine the stability of solutions of equation (15), we employ standard
techniques. Solutions of the form xW

bi
­xW !

i
are assumed to exist, where xW

bi
is the base-
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F 12. Real parts of eigenvalues σ
r
obtained from a linear stability analysis of a single layer of

uniformly spaced particles at y¯ 0. R
!
¯ (π}φ

a
)"/#, φ

a
¯ 0.74, τ¯ 47.656. V, Mode 1; ­, mode 2;

,, mode 3; ¬, mode 4. For comparison, growth rates associated with the ∆y
D

shown in figure 8 are
also shown (`).

state solution, the stability of which is of interest, and xW !
i

is a small perturbation.
Substituting xW

bi
­xW !

i
into equation (15) and linearizing yields

dxW !
i

dt
¯ 0¥uW i¥xW

j

1
xW
b

xW !
j
, (18)

which is a fourth-order system of linear ordinary differential equations. Furthermore,
because of the neglect of hydrodynamic interactions with adjacent particle layers and
the time averaging of electrostatic forces associated with these layers, the coefficient
matrix (¥uW

i
}¥xW

j
)xW

b

is time independent. Therefore, solutions of equation (18) have the
form

xW !
i
¯ b

i
eσt, (19)

where σ is an eigenvalue of the coefficient matrix and b
i
is its associated eigenvector.

For this work, the coefficient matrix and its eigen pairs were computed using
Mathematica (Wolfram 1991).

For the stability computations, we assume that particles in the layer are uniformly
spaced and located at y¯ 0. Therefore, we take the base-state positions of particles 1
and 2 to be xW

b
¯ (0, 0,R

!
, 0)T. Consistent with the simulations, R

!
¯ (π}0.74)"/#, τ¯

47.656, and γd *¯ 0.6575γd . For this base state, eigenvalues and eigenvectors of the
coefficient matrix have been computed for shear rates in the range 1%γd % 100 s−". For
all four modes the eigenvalues are real and simple, with σ

r
shown as a function of shear

rate in figure 12. For the entire range of γd shown, one mode is neutrally stable. The
other three modes are stable at low shear rate, but become less stable as the shear rate
is increased. The least stable mode becomes unstable at γd E 40 s−" (γd *E 26.3),
indicating that the simplified microstructure we have considered is indeed subject to a
linear instability. In the simulations, the critical shear rate was between 10 and 12 s−".
Growth rates associated with the ∆y

D
shown in figure 8 are also shown in figure 12 and

are in good qualitative agreement with the stability predictions.
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y

x

F 13. Layer of uniformly spaced particles at y¯ 0 that has been perturbed by the eigenvector
of the most unstable mode (mode 3). The norm of the eigenvector is unity. γd ¯ 100 s−", R

!
¯ (π}φ

a
)"/#,

φ
a
¯ 0.74, τ¯ 47.656. The dots mark the centres of the unperturbed particles. For clarity, the

periodicity of the two-particle configuration has been shown.

In figure 13, we show a layer of particles in the base state that has been perturbed
by the eigenvector of the most unstable mode. For the configuration shown, γd ¯
100 s−". The effect of this mode is to displace the upstream member of a particle pair
in the positive x- and y-directions, i.e. downstream and upwards, and to displace the
downstream member of a pair an equal amount in the negative x® and y-directions.
For perturbations of this type, the mean shear will tend to increase the magnitudes of
the x-components of the perturbation. In addition, since the perturbed row of particles
is not evenly spaced, lubrication forces exerted by adjacent particles will be unbalanced
and will tend to increase the magnitudes of both the x- and y-components of the
perturbation. The primary effect of repulsion is expected to be stabilizing. As a result,
for sufficiently high shear rates, perturbations of the type shown in figure 13 are
expected to be unstable, with the mechanism for this instability as outlined above. In
addition, the perturbed layer contains doublets similar to those seen in the simulations.

As a check on our stability computations, the coefficient matrix was also computed
using fourth-order finite differences. The velocity vectors needed for the difference
equations were obtained using a version of our Stokesian Dynamics code, modified so
that the hydrodynamic and repulsive forces were computed exactly as described in this
section. Eigen pairs of the coefficient matrix were computed using a  routine
(Anderson et al. 1992) that employed QR iteration. With ∆xW

j
¯ 10−%, elements of the

coefficient matrix, eigenvalues, and eigenvectors all differed by less than 10−"!, in
relative terms, from analogous quantities computed using Mathematica.

Finally, we comment on the generalization of our results to other systems. For the
suspension considered here, its behaviour is controlled by three dimensionless
parameters ; τ, φ

a
and γd *. Therefore, for fixed τ and φ

a
, the dimensionless critical shear

rate, i.e. γd $
c
, should be invariant. An examination of γd $

c
indicates that the dimensional

critical shear rate γd
c
as predicted by the simulations or the stability analysis should be

proportional to ε, ψ#

!
, 1}η

s
, and 1}a#. Furthermore, since the suspensions becomes more

hard-sphere like with increasing τ, we expect γd
c
to vary inversely with this parameter.

Finally, since hydrodynamic interactions are singular at contact but electrostatic forces
are finite, we expect γd

c
to decrease with increasing concentration. These conjectures are

consistent with the findings of others (see e.g. Hoffman 1974 and Barnes 1989).

3.4. Influence of system size

As noted by Bossis & Brady (1984), the computational cost of Stokesian Dynamics
scales as O(N $). Therefore, simulations are impractical for all but modest system sizes,
and may exhibit some dependence on the number of particles employed. To assess this
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F 14. Relative viscosity ηa as a function of shear rate γd for;, N¯ 25;!, N¯ 26; ­, N¯ 81;
¬, N¯ 100, obtained from Stokesian Dynamics simulations of a monolayer suspension of charge-
stabilized rigid spheres in a bulk linear shear flow. For N¯ 25 and γd & 12 s−", and N¯ 36 and
γd & 20 s−", additional repulsion with τ

"
¯ 10' and γd $

"
¯ 1 was used to prevent overlapping particles.

For N¯ 81 and 100, additional repulsion was not employed since ηa is shown for ordered suspensions
only. Error bars are omitted when smaller than the symbol. φ

a
¯ 0.74, τ¯ 47.656.

dependence for our results, a number of the simulations discussed in §§3.1 and 3.2, for
which N¯ 25, have been repeated with N¯ 36, 81 and 100. Other than the number of
particles N and the domain size h

cell
, which varied due to the variation of N, all

numerical parameters were identical to those employed in the N¯ 25 simulations
discussed previously.

The influence of system size on the bulk viscosity ηa is illustrated in figure 14, where
the shear-rate dependence of ηa is shown for N¯ 25, 36, 81 and 100. Viscosities for
N¯ 25 were shown previously in figure 3. In addition, for N¯ 81 and 100
computational costs precluded performing simulations at supercritical shear rates. For
all shear rates shown, ηa shows little variation with system size. Just prior to the onset
of shear thickening ηa E 4, while ηa is near 20 for γd & 20 s−". The critical shear rate γd

c

does exhibit a weak dependence on N, with 10!γd
c
% 12 for N¯ 25 and 15!γd

c
% 20

for N¯ 36. In addition, γd
c
exhibits some dependence on the shear rate history. For N

¯ 36 and 100, the suspension disordered at γd ¯ 10 s−" when simulations were initiated
with configurations obtained from γd ¯ 1 s−" simulations. However, when initiated with
configurations obtained from γd ¯ 5 s−" simulations, the suspension remained ordered
at γd ¯ 10 s−", suggesting metastability at this shear rate. Similar behaviour was not
observed for N¯ 25, with the asymptotic microstructure at γd ¯ 10 s−" consisting of
ordered layers even for simulations initiated with disordered configurations. This
suggests stability with respect to both infinitesimal and finite-amplitude disturbances.
Despite these discrepancies, system size does not appear to have a large effect on the
bulk viscosity. The microstructure, as quantified by g(y), also shows little variation
with N.

In agreement with our N¯ 25 results the onset of disorder in simulations employing
36, 81 and 100 particles also appears to be due to a linear instability that leads to the
formation of particle doublets in the suspension. This is demonstrated in figures 15 and
16. In figure 15, typical particle configurations for an initially ordered suspension
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F 15. Comparison of instantaneous particle configurations for different values of N, obtained
from Stokesian Dynamics simulation of a monolayer suspension of charge-stabilized rigid spheres in
a bulk linear shear flow. For N¯ 25 and 81, initial configurations were obtained from subcritical
simulations for which γd ¯ 10 s−". For N¯ 36 and 100, initial configurations were obtained from
subcritical simulations for which γd ¯ 15 s−". Flow is from left to right. Particle doublets are identified
by shading. φ

a
¯ 0.74, τ¯ 47.656, γd ¯ 20 s−". (a) N¯ 25, t¯ 124; (b) N¯ 36, t¯ 30; (c) N¯ 81,

t¯ 118; (d ) N¯ 100, t¯ 41.

undergoing supercritical shearing are shown for N¯ 25, 36, 81 and 100. Initial
configurations for these simulations were obtained from simulations at the highest
shear rate for which the sliding layer microstructure was maintained: γd ¯ 10 s−" for
N¯ 25 and 81, and γd ¯ 15 s−" for N¯ 36 and 100. For the configurations shown,
γd ¯ 20 s−". Qualitatively these configurations are quite similar, with particle doublets
(identified by the black shading) observed for all four values of N. These doublets
rotate due to the imposed flow and eventually disrupt the microstructural order of the
suspension. However, distinct quantitative differences in configurations are also
observed. For N¯ 25 and 81, only one or two rows of particles appear to contain
doublets. In contrast, for N¯ 36 and 100, doublets are present in every other row.
These differences are clearly due to system size since the alternating pattern of doublets
observed for N¯ 36 and 100 is incompatible with the imposed periodic boundary
conditions and the odd number of rows in configurations containing 25 and 81
particles. In addition, although the rows of unshaded particles in figures 15(b) and
15(d ) do appear to contain doublets, these particle pairs do not exhibit consistent
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F 16. Temporal dependence of cross-stream separation distance ∆y
D

between particle centres in
a typical doublet. For N¯ 25 and 81, initial configurations were obtained from subcritical
simulations for which γd ¯ 10 s−". For N¯ 36 and 100, initial configurations were obtained from
subcritical simulations for which γd ¯ 15 s−". γd ¯ 20 s−", φ

a
¯ 0.74, τ¯ 47.656. (a) N¯ 25 (——) and

N¯ 81 (–––––), (b) N¯ 36 (——) and N¯ 100 (-- - - -).

clockwise rotation and are therefore not considered to be doublets. Instead, these
particle pairs rotate in both directions in response to the relative motion of adjacent
layers.

The temporal evolution of ∆y
D

associated with doublets shown in figure 15 is shown
in figure 16. For all values of N, ∆y

D
exhibits exponential growth, suggesting that the

temporal evolution of doublets when N¯ 36, 81 and 100 is also governed by a linear
instability of the layered configurations. However, despite these similarities, the time
evolution of ∆y

D
does vary with system size. In particular, the evolution of ∆y

D
when

N¯ 25 and 81 is significantly different from observed behaviour when N¯ 36 and 100.
For N¯ 25 and 81, ∆y

D
is initially quite small, O(10−"!), but grows exponentially until

the suspension begins to exhibit a significant amount of disorder, which it does when
∆y

D
¯O(1). Exponential growth of ∆y

D
, on average, is also observed for N¯ 36 and

100. However, in contrast to the N¯ 25 and 81 results, ∆y
D

is initially quite large,
O(10−#), and exhibits considerable oscillation. We attribute these differences to the
configurations used to initiate the simulations, and to microstructural differences that
arise once the doublets begin to form. For all four values of N, initial conditions
consisted of sliding layer configurations obtained from simulations at subcritical shear
rates. For N¯ 25 and 81, particles in each layer of the initial configuration were in
almost perfect alignment. As a result, when these configurations were used to initiate
simulations at supercritical shear rates, initial values of ∆y

D
were also quite small. For

N¯ 36 and 100, particles in the initial configurations formed alternating patterns of
doublets similar to those seen in figures 15(b) and 15(d ), with particles in these
doublets offset by approximately 1%. As a result, when these configurations were used
to initiate simulations at supercritical shear rates, initial values of ∆y

D
were also about

1%. Oscillations in ∆y
D

when N¯ 36 and 100 are believed to be due to interactions
between doublets and adjacent layers of particles, which are closer together than when
N¯ 25 and 81 because of the alternating pattern of doublets.

In a small number of cases, the variation of ∆y
D

deviated from the behaviour
observed in figure 16. As noted in §3.2, doublets were intermittently present for
γd ¯ 10 s−" when N¯ 25 but did not cause the suspension to disorder. However, when
configurations containing these doublets were used to initiate simulations at
supercritical shear rates, the variation of ∆y

D
was similar to the variation observed in

figure 16(b), not figure 16(a). For N¯ 36, some configurations for γd ¯ 15 s−" did not
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contain doublets. As a result, when configurations such as these were used to initiate
simulations at supercritical shear rates, the onset of disorder was delayed significantly.
However, in all cases exponential growth of ∆y

D
was observed.

The results discussed above illustrate the non-trivial influence of system size for
simulations employing a small number of particles. However, despite the obvious effect
of N on various aspects of our results, the basic mechanism responsible for the onset
of disorder in our simulations appears to be the same for all values of N used.
Therefore, we believe our results are likely to be in qualitative agreement with results
obtained in the limit NU¢.

Finally, we note that for all of our reported results, N was a perfect square (25, 36,
81 or 100). Since our computational domain was square prior to shear, this choice of
N facilitates the formation of particle layers. For simulations in which the number of
particles is not a perfect square, the formation of layers is inhibited to some degree.
However, since experimental studies (see e.g. Hoffman 1972) have established that
monodisperse charge- and sterically stabilized suspensions exhibit a sliding layer
microstructure prior to the onset of shear thickening, our simulations were designed to
mimic this behaviour, with N chosen to facilitate layer formation.

4. Conclusions

Stokesian Dynamics has been used to investigate the origins of shear thickening in
monodisperse charge-stabilized colloidal suspensions. In agreement with established
experimental data for these types of suspensions (see e.g. Hoffman 1972; Chow &
Zukoski 1995b ; Chen et al. 1994), our results indicate that shear thickening is
associated with an order–disorder transition of the suspension microstructure. Below
the critical shear rate at which this transition occurs, the suspension microstructure
consists of two-dimensional analogues of experimentally observed sliding layer
configurations. Above this critical shear rate, suspensions are disordered and exhibit
viscosities and microstructures characteristic of suspensions of non-Brownian hard
spheres. This suggests that shear thickening in monodisperse charge-stabilized
suspensions, and the associated loss of microstructural order, are manifestations of a
transition to a high-shear regime in which charge-stabilized suspensions become
rheologically and microstructurally indistinguishable from suspensions of non-
Brownian hard spheres.

In agreement with other investigations (see e.g. D’Haene et al. 1993; Phung et al.
1996; Bender & Wagner 1996), the high viscosity that defines shear thickening is
evidently due to the formation of large particle clusters. These clusters can generate
high stresses due to the thin lubrication layers between particles. However, a key
difference between the shear thickening observed here and the shear thickening
observed in hard-sphere systems appears to be the mechanism leading to the cluster-
dominated regime. For monodisperse charge-stabilized systems with particles moving
in ordered layers, this study shows that an instability causes the order–disorder
transition which leads to conditions under which particle clusters can form. In other
words, the order–disorder transition does not cause the shear thickening per se, but it
sets up the conditions under which particle clusters can form and cause shear
thickening.

Our results further suggest that the observed transition from ordered layers to an
amorphous microstructure is due to the formation of doublets in which the component
particles are offset in the shear-gradient direction and separated by less than the
average spacing within the ordered layers. These doublets tend to rotate due to the
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applied shear and disrupt long-range microstructural order. Examination of the cross-
stream dimension of these doublets indicates exponential growth, suggesting that the
evolution of these doublets is due to a linear instability of the sliding layer
microstructure. These findings are consistent with the instability mechanism first
advanced by Hoffman (1974). However, our results are the first concrete evidence in
support of this view.

Our contention that the observed doublets are a manifestation of a microstructural
instability is supported by results of a linear stability analysis. Results of this analysis
indicate that a single string of charge-stabilized particles subjected to a bulk linear
shear flow, with the particles identical in all respects to the particles in the simulations,
becomes linearly unstable above a shear rate of about 40 s−". The mechanism
responsible for this instability appears to be the combined effects of the mean shear and
lubrication forces acting on the perturbed configuration. This instability leads to the
formation of particle doublets similar to those observed in the simulations.

Since particles in our simulations are force- and torque-free, the results clearly
indicate that a force or torque imbalance is not a necessary condition for the observed
instability, microstructural disorder, or shear thickening. This finding is consistent with
the well-established view that particle inertia is negligible in colloidal suspensions
subjected to moderate rates of deformation.

A body of existing work indicates that in some colloidal suspensions, an
order–disorder transition is neither necessary nor sufficient for the occurrence of shear
thickening. For example, hard-sphere (see e.g. D’Haene et al. 1993; Phung et al. 1996;
Bender & Wagner 1996) and polydisperse suspensions (see e.g. Laun et al. 1992) are
believed to shear thicken in the absence of an order–disorder transition. Furthermore,
even when suspended particles are repulsive and relatively monodisperse, moderately
dense suspensions will disorder without shear thickening (see e.g. Chow & Zukoski
1995b). However, the results discussed here are for a very dense monodisperse charge-
stabilized suspension, for which the link between order–disorder transitions and shear
thickening is well established. Thus our results are consistent with the findings of other
investigations.

Results obtained for a range of system sizes are in qualitative agreement, suggesting
our findings are likely to be qualitatively consistent with results obtained using a very
large number of particles. However, quantitative differences between results obtained
with different values of N illustrate the sensitivity of simulations of ordered suspensions
to variations in system size when N is small. Clearly, there is a need to develop methods
that will allow simulations of much larger systems.

Our results do not include the effect of Brownian motion. The critical Pe! clet number
Pe¯ 6πη

s
a$γd }kT for our simulations was about 3400 (based on the physical

parameters of Boersma et al.’s experiments). Therefore, even at the high densities
considered, we believe it is reasonable to assume that Brownian motion is of secondary
importance.

Owing to computational constraints, our simulations were limited almost entirely to
monolayer suspensions. To gain a better and more quantitative understanding of
microstructural transitions and shear thickening in real systems, simulations of three-
dimensional suspensions should be performed. While we would not expect our findings
to change significantly with the inclusion of three-dimensionality, various aspects of
the results, such as critical shear rates for the onset of disorder, could be quite different.
We note that with current methodologies, three-dimensional Stokesian Dynamics
simulations are expensive and impractical for routine use.

Although the current work has included an analysis of microstructural stability, this
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analysis was limited to a relatively simple one-dimensional microstructure (i.e. a single
string of particles). Future work in this area should include analysis aimed at predicting
the stability of more realistic two-dimensional microstructures, such as those in our
simulations. Such an analysis could be readily performed using the Stokesian
Dynamics methodology in combination with Floquet theory. In addition to answering
fundamental questions regarding the nature of observed microstructural transitions,
stability analysis could provide the theoretical foundation for a computational tool for
estimating critical shear rates in monodisperse, repulsive suspensions.

The authors wish to thank Professor J. F. Brady for the use of his Stokesian Dynamics
simulation code and Dr Nancy Huang of the Chinese Academy of Sciences for her help
in the initial programming stages of this work. Financial support for this work has
been provided by the Monsanto Company and the University of Illinois. Computations
described herein were performed on an IBM RS}6000 workstation provided through
the IBM Shared University Research program.

REFERENCES

A, M. P. & T, D. J. 1987 Computer Simulation of Liquids. Clarendon.

A, E., B, Z., B, C., D, J., D, J., D C, J., G, A.,
H, S., MK, A., O, S. & S, D. 1992 LAPACK Users’
Guide. SIAM.

B, H. A. 1989 Shear-thickening (‘dilatancy’) in suspensions of nonaggregating solid particles
dispersed in Newtonian liquids. J. Rheol. 33, 329–366.

B, J. S. & P, A. G. 1986 Random Data: Analysis and Measurement Procedures. John
Wiley and Sons.

B, J. & W, N. J. 1996 Reversible shear thickening in monodisperse and bidisperse
colloidal dispersions. J. Rheol. 40, 899–916.

B, W. H., B, P. J. M., L, J. & S, H. N. 1991 Time-dependent behavior and wall
slip in concentrated shear thickening dispersions. J. Rheol. 35, 1093–1120.

B, W. H., L, J. & S, H. N. 1990 Shear thickening (dilatancy) in concentrated
dispersions. AICHE J. 36, 321–332.

B, W. H., L, J. & S, H. N. 1995 Computer simulations of shear thickening of
concentrated dispersions. J. Rheol. 39, 841–860.

B, R. T. & B, J. F. 1992 Dynamic simulation of an electrorheological fluid. J. Chem.
Phys. 96, 2183–2202.

B, G. & B, J. F. 1984 Dynamic simulation of sheared suspensions. I. General method.
J. Chem. Phys. 80, 5141–5154.

B, G. & B, J. F. 1989 The rheology of Brownian suspensions. J. Chem. Phys. 91,
1866–1874.

B, J. F. & B, G. 1985 The rheology of concentrated suspensions of spheres in simple shear
flow by numerical simulation. J. Fluid Mech. 155, 105–129.

B, J. F. & B, G. 1988 Stokesian dynamics. Ann. Re�. Fluid Mech. 20, 111–157.

B, J. F., P, R. J., L, J. C. & B, G. 1988 Dynamic simulation of
hydrodynamically interacting suspensions. J. Fluid Mech. 195, 257–280.

C, C. E. & W, I. 1977 Shear thinning and thickening rheology. II. Volume fraction
and size of dispersed particles. J. Colloid Interface Sci. 59, 63–75.

C, C. & P, R. L. 1993 Dynamic simulation of bimodal suspensions of hydrodynamically
interacting spherical particles. J. Fluid Mech. 253, 1–25.

C, L. B., C, M. K., A, B. J. & Z, C. F. 1994 Rheological and microstructural
transitions in colloidal crystal. Langmuir 10, 2817–2829.



30 D. I. Dratler, W. R. Schowalter and R. L. Hoffman

C, M. K. & Z, C. F. 1995a Gap size and shear history dependencies in shear thickening
of a suspension ordered at rest. J. Rheol. 39, 15–32.

C, M. K. & Z, C. F. 1995b Nonequilibrium behavior of dense suspensions of uniform
particles : Volume fraction and size dependence of rheology and microstructure. J. Rheol. 39,
33–59.

C, S. D. & B, C.  1980 Elementary Numerical Methods: An Algorithmic Approach.
McGraw-Hill.

D’H, P., M, J. & F, G. G. 1993 Scattering dichroism measurements of flow-induced
structure of a shear thickening suspension. J. Colloid Interface Sci. 156, 350–358.

D, D. I. & S, W. R. 1996 Dynamic simulation of suspensions of non-Brownian
hard spheres. J. Fluid Mech. 325, 53–77.

D, L., B, J. F. & B, G. 1987 Dynamic simulation of hydrodynamically
interacting particles. J. Fluid Mech. 180, 21–49.

H, R. L. 1972 Discontinuous and dilatant viscosity behavior in concentrated suspensions. I.
Observation of flow instability. Trans. Soc. Rheol. 16, 155–173.

H, R. L. 1974 Discontinuous and dilatant viscosity behavior in concentrated suspensions. II.
Theory and experimental tests. J. Colloid Interface Sci. 46, 491–506.

H, R. L. 1991 Interrelationships of particle structure and flow in concentrated suspensions.
Mater. Res. Soc. Bull. 16, 32–37.

K, S. & K, S. J. 1991 Microhydrodynamics: Principles and Selected Applications.
Butterworth-Hiemann.

L, A. J. C. 1990 Hydrodynamic transport coefficients of random dispersions of hard spheres.
J. Chem. Phys. 93, 3484–3494.

L, H. M., B, R., H, S., L, W., H, O., H, K., H$ , E., H, R.,
S, F. & L, P. 1992 Rheological and small angle neutron scattering investigation
of shear-induced particle structures of concentrated polymer dispersions submitted to plane
Poiseuille and Couette flow. J. Rheol. 36, 743–787.

L, H. M., B, R. & S, F. 1991 Rheology of extremely shear thickening polymer
dispersions (passively viscosity switching fluids). J. Rheol. 35, 999–1034.

M, A. B. & W, M. 1958 Flow behavior of concentrated (dilatant) suspensions.
Trans. Soc. Rheol. 11, 239–254.

P, T. N., B, J. F. & B, G. 1996 Stokesian dynamics simulation of Brownian
suspensions. J. Fluid Mech. 313, 181–207.

R, W. B., S, D. A. & S, W. R. 1989 Colloidal Dispersions. Cambridge
University Press.

S, T. A. 1976 The shear thickening effect in concentrated dispersion systems. J. Colloid
Interface Sci. 57, 476–487.

W, S. J. & M, C. W. 1978 Steady shear rheological behavior of PVC plastisols.
J. Rheol. 22, 525–545.

W, S. 1991 Mathematica: A System for Doing Mathematics by Computer. Addison-Wesley.


